101 СПОСОБ ЗАРАБОТАТЬ НА ПЕЧАТИ

Эволюция растровых форматов

  • Игорь Терентьев
  • 19 августа 2002 г.
  • 2882

Терентьев Игорь Растровая и векторная графика лежит в основе издательских процессов. И DTP-революция началась с того, что на компьютерах Apple Macintosh появились первые, пока еще примитивные инструменты для создания и обработки графики, а лазерные принтеры обеспечили вывод макетов с минимально приемлемым качеством. С тех пор утекло немало воды, но принцип работы любого верстальщика остался неизменным — берутся растровые и векторные файлы и объединяются в одном макете.

С точки зрения удобства использования векторная графика, безусловно, предпочтительнее. Чистая математика — минимальные объемы файлов, возможность масштабирования и вывода на любое устройство без какой-либо потери качества. Однако переводить в цифровой вид реалии окружающего мира гораздо проще растровыми изображениями. Фотографируем, сканируем, а на выходе получаем растровую картинку. Что с ней делают дальше? Правильно: упаковывают в файлы различных форматов.

Любопытно проследить за эволюцией форматов для хранения растровых изображений. Первые форматы, разработанные для стандартных настольных компьютеров, позволяли хранить лишь картинки строго ограниченных размеров. Количество градаций цветов — никакое, только ч/б штриховая графика. Естественно, профессионалов в допечатной подготовке эта ситуация не устраивала, и дальнейшее развитие пошло по двум основным направлениям: расширение возможностей сохранения информации о цвете и сжатие файлов.

Человеческий глаз различает около 128 градаций серого цвета, поэтому первоначально посчитали, что 8 разрядов (256 градаций) должно было хватить с запасом. В модели RGB базовых цветов три — понадобились уже 24 разряда на пиксель, а для файлов CMYK — все 32. В дальнейшем для получения результатов максимального качества при профессиональном сканировании признали необходимым сохранять 12, а потом и 16 разрядов на каждый цвет — так появился 48-разрядный формат.

Такой глубины цвета хватало всем, но сама информация о цвете была аппаратно-зависимой. Например, сканер преобразовывает цвета оригинала в числовые значения с определенными искажениями. Поэтому одновременно с увеличением разрядности возникла необходимость сохранять в формате файла также информацию о том, как был искажен цвет относительно исходного, — профиль устройства. Это тоже было сделано. И при дальнейшей обработке кроме числовых значений цветов для каждого пикселя программы уже могли использовать для более точной передачи цветов встроенный в файл профиль. Еще один способ более точного сохранения цветовой информации – сохранение данных о цвете в моделях, учитывающих особенности зрения человека, например LAB. Форматы были пополнены и такими возможностями.

Одна из последних вариаций на тему профилей — технологии, в которых данные о режимах экспонирования при съемке на цифровую камеру сохраняются вместе со снимком, что должно обеспечить улучшение воспроизведения цветов оригинального изображения при печати.

Мы прошлись по одной эволюционной ветви, а параллельно развивалась и другая. Каждый шаг по увеличению разрядности хранимого цвета и добавлению в формат файла другой информации приводил к радикальному росту объема данных в пересчете на каждый пиксель. Пришлось заняться сжатием данных.

Сначала были реализованы методы компрессии без потерь (уменьшали объем файла в несколько раз), затем пришло время более сложных алгоритмов, которым за счет отбрасывания наименее значимых данных об изображении удавалось обеспечить степень сжатия в десятки и даже сотни раз. Наиболее экзотические технологии, опирающиеся на теорию фракталов, вычленяют из картинки отдельные объекты, описывая их поведение и последующее «размножение» математическими формулами.

Куда заведет нас дальнейшая эволюция форматов растровых изображений? Учитывая продолжающийся рост вычислительных мощностей, можно предположить, что рано или поздно в полиграфических приложениях высокого класса научатся относительно недорого захватывать, обрабатывать и сохранять самую полную информацию о цвете — спектральную. Это потребует создания соответствующих форматов файлов. Но параллельно возрастет и роль технологий сжатия данных (и все более изощренных) с потерями — скорее всего, такие файлы будут гораздо активнее, чем сейчас, использоваться для допечатной подготовки. Особенно, когда требования к качеству печатной продукции незапредельные.

ПОХОЖИЕ СТАТЬИ
Ricoh Ri 1000
Ricoh Ri 1000

Струйный принтер с белилами формата А3 для печати по футболкам и другим готовым изделиям из ткани будет хорош для печатных салонов среднего размера и цифровых типографий, которые хотят расширить своё присутствие в этом секторе рынка.

Итоги 2019 года в полиграфии
Итоги 2019 года в полиграфии

Год прошёл, самое время подвести его итоги. Давайте вспомним обо всех его важных событиях в мире и России в полиграфической отрасли — от слияний и поглощений до новых продуктов, выставок и кадровых перемен.

European Carton Excellence Award 2019
European Carton Excellence Award 2019

Лучшая европейская картонная упаковка 2019 года по версии ассоциации Pro Carton.

Рабочие лошадки для рекламных производств
Рабочие лошадки для рекламных производств

Выбираем универсальный рулонный принтер (принтер/каттер) для интерьерного оформления и наружной рекламы самых популярных в рекламной индустрии форматов — с шириной печати до 183 см.


Новый номер

Тема номера — «Мобильные приложения для полиграфистов». В номере — итоги 2019 года в полиграфии, интервью с Horizon International, встреча с RMGT. «Например» о типографии PMG и Design Studio 3D. Справочник покупателя по широкоформатным (до 1,8 м) принтерам для рекламных производств. Лучшая европейская картонная упаковка. Обзор Ricoh Ri 1000. Тайный Покупатель — о ценах и сроках изготовления журнала.


Голосование
Что сдерживает переход на цифровую печать упаковки и этикетки?
    Проголосовало: 55